MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. ACI-ASTM CF16Fa Steel

Both ASTM A182 grade F122 and ACI-ASTM CF16Fa steel are iron alloys. They have 79% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is ACI-ASTM CF16Fa steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
28
Fatigue Strength, MPa 320
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Tensile Strength: Ultimate (UTS), MPa 710
540
Tensile Strength: Yield (Proof), MPa 450
230

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Mechanical, °C 600
980
Melting Completion (Liquidus), °C 1490
1420
Melting Onset (Solidus), °C 1440
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 24
16
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 12
17
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
3.3
Embodied Energy, MJ/kg 44
47
Embodied Water, L/kg 100
150

Common Calculations

PREN (Pitting Resistance) 17
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
120
Resilience: Unit (Modulus of Resilience), kJ/m3 520
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
19
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 6.4
4.2
Thermal Shock Resistance, points 19
12

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0 to 0.16
Chromium (Cr), % 10 to 11.5
18 to 21
Copper (Cu), % 0.3 to 1.7
0
Iron (Fe), % 81.3 to 87.7
62.1 to 72.4
Manganese (Mn), % 0 to 0.7
0 to 1.5
Molybdenum (Mo), % 0.25 to 0.6
0.4 to 0.8
Nickel (Ni), % 0 to 0.5
9.0 to 12
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 2.0
Sulfur (S), % 0 to 0.010
0.2 to 0.4
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zirconium (Zr), % 0 to 0.010
0