MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. C355.0 Aluminum

ASTM A182 grade F122 belongs to the iron alloys classification, while C355.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is C355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
86 to 90
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 23
2.7 to 3.8
Fatigue Strength, MPa 320
76 to 84
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 710
290 to 310
Tensile Strength: Yield (Proof), MPa 450
200 to 230

Thermal Properties

Latent Heat of Fusion, J/g 270
470
Maximum Temperature: Mechanical, °C 600
170
Melting Completion (Liquidus), °C 1490
620
Melting Onset (Solidus), °C 1440
570
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 24
150
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
39
Electrical Conductivity: Equal Weight (Specific), % IACS 12
130

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 3.0
8.0
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 100
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
7.5 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 520
290 to 380
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 25
30 to 32
Strength to Weight: Bending, points 22
36 to 37
Thermal Diffusivity, mm2/s 6.4
60
Thermal Shock Resistance, points 19
13 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.020
91.7 to 94.1
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0
Chromium (Cr), % 10 to 11.5
0
Copper (Cu), % 0.3 to 1.7
1.0 to 1.5
Iron (Fe), % 81.3 to 87.7
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 0.7
0 to 0.1
Molybdenum (Mo), % 0.25 to 0.6
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
4.5 to 5.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0 to 0.2
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.15