ASTM A182 Grade F122 vs. EN 1.0434 Steel
Both ASTM A182 grade F122 and EN 1.0434 steel are iron alloys. They have 85% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.
For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is EN 1.0434 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 220 | |
110 to 160 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 23 | |
12 to 28 |
Fatigue Strength, MPa | 320 | |
190 to 300 |
Poisson's Ratio | 0.28 | |
0.29 |
Reduction in Area, % | 45 | |
64 to 74 |
Shear Modulus, GPa | 76 | |
73 |
Shear Strength, MPa | 450 | |
280 to 330 |
Tensile Strength: Ultimate (UTS), MPa | 710 | |
390 to 540 |
Tensile Strength: Yield (Proof), MPa | 450 | |
250 to 450 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
250 |
Maximum Temperature: Mechanical, °C | 600 | |
400 |
Melting Completion (Liquidus), °C | 1490 | |
1460 |
Melting Onset (Solidus), °C | 1440 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 24 | |
52 |
Thermal Expansion, µm/m-K | 13 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 10 | |
7.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 12 | |
8.0 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 12 | |
1.8 |
Density, g/cm3 | 8.0 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 3.0 | |
1.4 |
Embodied Energy, MJ/kg | 44 | |
18 |
Embodied Water, L/kg | 100 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 140 | |
39 to 140 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 520 | |
170 to 540 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 25 | |
14 to 19 |
Strength to Weight: Bending, points | 22 | |
15 to 19 |
Thermal Diffusivity, mm2/s | 6.4 | |
14 |
Thermal Shock Resistance, points | 19 | |
12 to 17 |
Alloy Composition
Aluminum (Al), % | 0 to 0.020 | |
0.020 to 0.060 |
Boron (B), % | 0 to 0.0050 | |
0 |
Carbon (C), % | 0.070 to 0.14 | |
0.15 to 0.19 |
Chromium (Cr), % | 10 to 11.5 | |
0 |
Copper (Cu), % | 0.3 to 1.7 | |
0 |
Iron (Fe), % | 81.3 to 87.7 | |
98.8 to 99.18 |
Manganese (Mn), % | 0 to 0.7 | |
0.65 to 0.85 |
Molybdenum (Mo), % | 0.25 to 0.6 | |
0 |
Nickel (Ni), % | 0 to 0.5 | |
0 |
Niobium (Nb), % | 0.040 to 0.1 | |
0 |
Nitrogen (N), % | 0.040 to 0.1 | |
0 |
Phosphorus (P), % | 0 to 0.020 | |
0 to 0.025 |
Silicon (Si), % | 0 to 0.5 | |
0 to 0.1 |
Sulfur (S), % | 0 to 0.010 | |
0 to 0.025 |
Titanium (Ti), % | 0 to 0.010 | |
0 |
Tungsten (W), % | 1.5 to 2.5 | |
0 |
Vanadium (V), % | 0.15 to 0.3 | |
0 |
Zirconium (Zr), % | 0 to 0.010 | |
0 |