MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. EN 1.5414 Steel

Both ASTM A182 grade F122 and EN 1.5414 steel are iron alloys. They have 86% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is EN 1.5414 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
170 to 180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
22
Fatigue Strength, MPa 320
250 to 270
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 450
350 to 370
Tensile Strength: Ultimate (UTS), MPa 710
550 to 580
Tensile Strength: Yield (Proof), MPa 450
350 to 380

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 600
410
Melting Completion (Liquidus), °C 1490
1470
Melting Onset (Solidus), °C 1440
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 24
44
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 12
2.6
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.6
Embodied Energy, MJ/kg 44
21
Embodied Water, L/kg 100
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 520
320 to 370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
19 to 20
Strength to Weight: Bending, points 22
19 to 20
Thermal Diffusivity, mm2/s 6.4
12
Thermal Shock Resistance, points 19
16 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0 to 0.2
Chromium (Cr), % 10 to 11.5
0 to 0.3
Copper (Cu), % 0.3 to 1.7
0 to 0.3
Iron (Fe), % 81.3 to 87.7
96.4 to 98.7
Manganese (Mn), % 0 to 0.7
0.9 to 1.5
Molybdenum (Mo), % 0.25 to 0.6
0.45 to 0.6
Nickel (Ni), % 0 to 0.5
0 to 0.3
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0 to 0.012
Phosphorus (P), % 0 to 0.020
0 to 0.015
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.010
0 to 0.0050
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zirconium (Zr), % 0 to 0.010
0