MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. EN 1.7383 Steel

Both ASTM A182 grade F122 and EN 1.7383 steel are iron alloys. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is EN 1.7383 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
170 to 180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
20 to 23
Fatigue Strength, MPa 320
210 to 270
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
74
Shear Strength, MPa 450
350 to 380
Tensile Strength: Ultimate (UTS), MPa 710
560 to 610
Tensile Strength: Yield (Proof), MPa 450
300 to 400

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Maximum Temperature: Mechanical, °C 600
460
Melting Completion (Liquidus), °C 1490
1470
Melting Onset (Solidus), °C 1440
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 24
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
3.9
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.8
Embodied Energy, MJ/kg 44
23
Embodied Water, L/kg 100
59

Common Calculations

PREN (Pitting Resistance) 17
5.6
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 520
240 to 420
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
20 to 22
Strength to Weight: Bending, points 22
19 to 20
Thermal Diffusivity, mm2/s 6.4
11
Thermal Shock Resistance, points 19
16 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.020
0 to 0.040
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0.080 to 0.15
Chromium (Cr), % 10 to 11.5
2.0 to 2.5
Copper (Cu), % 0.3 to 1.7
0 to 0.3
Iron (Fe), % 81.3 to 87.7
94.3 to 96.6
Manganese (Mn), % 0 to 0.7
0.4 to 0.8
Molybdenum (Mo), % 0.25 to 0.6
0.9 to 1.1
Nickel (Ni), % 0 to 0.5
0 to 0.3
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zirconium (Zr), % 0 to 0.010
0