MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. EN AC-21100 Aluminum

ASTM A182 grade F122 belongs to the iron alloys classification, while EN AC-21100 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is EN AC-21100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 23
6.2 to 7.3
Fatigue Strength, MPa 320
79 to 87
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 710
340 to 350
Tensile Strength: Yield (Proof), MPa 450
210 to 240

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 600
170
Melting Completion (Liquidus), °C 1490
670
Melting Onset (Solidus), °C 1440
550
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 24
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
34
Electrical Conductivity: Equal Weight (Specific), % IACS 12
100

Otherwise Unclassified Properties

Base Metal Price, % relative 12
11
Density, g/cm3 8.0
3.0
Embodied Carbon, kg CO2/kg material 3.0
8.0
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 100
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
19 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 520
300 to 400
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 25
31 to 33
Strength to Weight: Bending, points 22
36 to 37
Thermal Diffusivity, mm2/s 6.4
48
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 0 to 0.020
93.4 to 95.7
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0
Chromium (Cr), % 10 to 11.5
0
Copper (Cu), % 0.3 to 1.7
4.2 to 5.2
Iron (Fe), % 81.3 to 87.7
0 to 0.19
Manganese (Mn), % 0 to 0.7
0 to 0.55
Molybdenum (Mo), % 0.25 to 0.6
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.18
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0.15 to 0.3
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
0 to 0.070
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.1