MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. EN AC-48000 Aluminum

ASTM A182 grade F122 belongs to the iron alloys classification, while EN AC-48000 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is EN AC-48000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 23
1.0
Fatigue Strength, MPa 320
85 to 86
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
28
Tensile Strength: Ultimate (UTS), MPa 710
220 to 310
Tensile Strength: Yield (Proof), MPa 450
210 to 270

Thermal Properties

Latent Heat of Fusion, J/g 270
570
Maximum Temperature: Mechanical, °C 600
190
Melting Completion (Liquidus), °C 1490
600
Melting Onset (Solidus), °C 1440
560
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 24
130
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
33
Electrical Conductivity: Equal Weight (Specific), % IACS 12
110

Otherwise Unclassified Properties

Base Metal Price, % relative 12
10
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 3.0
7.9
Embodied Energy, MJ/kg 44
140
Embodied Water, L/kg 100
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
2.2 to 3.0
Resilience: Unit (Modulus of Resilience), kJ/m3 520
300 to 510
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 25
23 to 33
Strength to Weight: Bending, points 22
31 to 39
Thermal Diffusivity, mm2/s 6.4
54
Thermal Shock Resistance, points 19
10 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.020
80.4 to 87.2
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0
Chromium (Cr), % 10 to 11.5
0
Copper (Cu), % 0.3 to 1.7
0.8 to 1.5
Iron (Fe), % 81.3 to 87.7
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 0.7
0 to 0.35
Molybdenum (Mo), % 0.25 to 0.6
0
Nickel (Ni), % 0 to 0.5
0.7 to 1.3
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
10.5 to 13.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0 to 0.25
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
0 to 0.35
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.15