MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. EZ33A Magnesium

ASTM A182 grade F122 belongs to the iron alloys classification, while EZ33A magnesium belongs to the magnesium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is EZ33A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
55
Elastic (Young's, Tensile) Modulus, GPa 190
44
Elongation at Break, % 23
2.6
Fatigue Strength, MPa 320
70
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
17
Shear Strength, MPa 450
140
Tensile Strength: Ultimate (UTS), MPa 710
150
Tensile Strength: Yield (Proof), MPa 450
100

Thermal Properties

Latent Heat of Fusion, J/g 270
330
Maximum Temperature: Mechanical, °C 600
250
Melting Completion (Liquidus), °C 1490
640
Melting Onset (Solidus), °C 1440
570
Specific Heat Capacity, J/kg-K 470
970
Thermal Conductivity, W/m-K 24
100
Thermal Expansion, µm/m-K 13
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
24
Electrical Conductivity: Equal Weight (Specific), % IACS 12
110

Otherwise Unclassified Properties

Base Metal Price, % relative 12
25
Density, g/cm3 8.0
1.9
Embodied Carbon, kg CO2/kg material 3.0
25
Embodied Energy, MJ/kg 44
190
Embodied Water, L/kg 100
930

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 520
120
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
61
Strength to Weight: Axial, points 25
22
Strength to Weight: Bending, points 22
33
Thermal Diffusivity, mm2/s 6.4
54
Thermal Shock Resistance, points 19
9.2

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0
Chromium (Cr), % 10 to 11.5
0
Copper (Cu), % 0.3 to 1.7
0 to 0.1
Iron (Fe), % 81.3 to 87.7
0
Magnesium (Mg), % 0
91.5 to 95
Manganese (Mn), % 0 to 0.7
0
Molybdenum (Mo), % 0.25 to 0.6
0
Nickel (Ni), % 0 to 0.5
0 to 0.010
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.5
0
Unspecified Rare Earths, % 0
2.5 to 4.0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
2.0 to 3.1
Zirconium (Zr), % 0 to 0.010
0.5 to 1.0
Residuals, % 0
0 to 0.3