MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. SAE-AISI 5130 Steel

Both ASTM A182 grade F122 and SAE-AISI 5130 steel are iron alloys. They have 86% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is SAE-AISI 5130 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
150 to 190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
12 to 22
Fatigue Strength, MPa 320
230 to 330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 450
310 to 390
Tensile Strength: Ultimate (UTS), MPa 710
500 to 640
Tensile Strength: Yield (Proof), MPa 450
330 to 530

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 600
420
Melting Completion (Liquidus), °C 1490
1460
Melting Onset (Solidus), °C 1440
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 24
45
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
2.2
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 44
19
Embodied Water, L/kg 100
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
74 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 520
290 to 750
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
18 to 23
Strength to Weight: Bending, points 22
18 to 21
Thermal Diffusivity, mm2/s 6.4
12
Thermal Shock Resistance, points 19
16 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0.28 to 0.33
Chromium (Cr), % 10 to 11.5
0.8 to 1.1
Copper (Cu), % 0.3 to 1.7
0
Iron (Fe), % 81.3 to 87.7
97.2 to 98.1
Manganese (Mn), % 0 to 0.7
0.7 to 0.9
Molybdenum (Mo), % 0.25 to 0.6
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.5
0.15 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.040
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zirconium (Zr), % 0 to 0.010
0