MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. SAE-AISI 8630 Steel

Both ASTM A182 grade F122 and SAE-AISI 8630 steel are iron alloys. They have 86% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is SAE-AISI 8630 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
160 to 200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
12 to 24
Fatigue Strength, MPa 320
260 to 350
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 450
340 to 410
Tensile Strength: Ultimate (UTS), MPa 710
540 to 680
Tensile Strength: Yield (Proof), MPa 450
360 to 560

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 600
410
Melting Completion (Liquidus), °C 1490
1460
Melting Onset (Solidus), °C 1440
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 24
39
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
2.6
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.5
Embodied Energy, MJ/kg 44
20
Embodied Water, L/kg 100
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
78 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 520
340 to 840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
19 to 24
Strength to Weight: Bending, points 22
19 to 22
Thermal Diffusivity, mm2/s 6.4
10
Thermal Shock Resistance, points 19
18 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0.28 to 0.33
Chromium (Cr), % 10 to 11.5
0.4 to 0.6
Copper (Cu), % 0.3 to 1.7
0
Iron (Fe), % 81.3 to 87.7
96.8 to 97.9
Manganese (Mn), % 0 to 0.7
0.7 to 0.9
Molybdenum (Mo), % 0.25 to 0.6
0.15 to 0.25
Nickel (Ni), % 0 to 0.5
0.4 to 0.7
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.5
0.15 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.040
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zirconium (Zr), % 0 to 0.010
0