MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. C69300 Brass

ASTM A182 grade F122 belongs to the iron alloys classification, while C69300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is C69300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 23
8.5 to 15
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
41
Shear Strength, MPa 450
330 to 370
Tensile Strength: Ultimate (UTS), MPa 710
550 to 630
Tensile Strength: Yield (Proof), MPa 450
300 to 390

Thermal Properties

Latent Heat of Fusion, J/g 270
240
Maximum Temperature: Mechanical, °C 600
160
Melting Completion (Liquidus), °C 1490
880
Melting Onset (Solidus), °C 1440
860
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 24
38
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
26
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 44
45
Embodied Water, L/kg 100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
47 to 70
Resilience: Unit (Modulus of Resilience), kJ/m3 520
400 to 700
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 25
19 to 21
Strength to Weight: Bending, points 22
18 to 20
Thermal Diffusivity, mm2/s 6.4
12
Thermal Shock Resistance, points 19
19 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0
Chromium (Cr), % 10 to 11.5
0
Copper (Cu), % 0.3 to 1.7
73 to 77
Iron (Fe), % 81.3 to 87.7
0 to 0.1
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 0.7
0 to 0.1
Molybdenum (Mo), % 0.25 to 0.6
0
Nickel (Ni), % 0 to 0.5
0 to 0.1
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0.040 to 0.15
Silicon (Si), % 0 to 0.5
2.7 to 3.4
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
18.4 to 24.3
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.5