MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. N08700 Stainless Steel

Both ASTM A182 grade F122 and N08700 stainless steel are iron alloys. They have 60% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is N08700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
32
Fatigue Strength, MPa 320
210
Poisson's Ratio 0.28
0.28
Reduction in Area, % 45
45
Shear Modulus, GPa 76
79
Shear Strength, MPa 450
410
Tensile Strength: Ultimate (UTS), MPa 710
620
Tensile Strength: Yield (Proof), MPa 450
270

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Mechanical, °C 600
1100
Melting Completion (Liquidus), °C 1490
1450
Melting Onset (Solidus), °C 1440
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 24
13
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 12
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
32
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 3.0
6.0
Embodied Energy, MJ/kg 44
82
Embodied Water, L/kg 100
200

Common Calculations

PREN (Pitting Resistance) 17
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
160
Resilience: Unit (Modulus of Resilience), kJ/m3 520
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
21
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 6.4
3.5
Thermal Shock Resistance, points 19
14

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0 to 0.040
Chromium (Cr), % 10 to 11.5
19 to 23
Copper (Cu), % 0.3 to 1.7
0 to 0.5
Iron (Fe), % 81.3 to 87.7
42 to 52.7
Manganese (Mn), % 0 to 0.7
0 to 2.0
Molybdenum (Mo), % 0.25 to 0.6
4.3 to 5.0
Nickel (Ni), % 0 to 0.5
24 to 26
Niobium (Nb), % 0.040 to 0.1
0 to 0.4
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zirconium (Zr), % 0 to 0.010
0