MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. N08801 Stainless Steel

Both ASTM A182 grade F122 and N08801 stainless steel are iron alloys. They have 57% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is N08801 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
34
Fatigue Strength, MPa 320
260
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 450
570
Tensile Strength: Ultimate (UTS), MPa 710
860
Tensile Strength: Yield (Proof), MPa 450
190

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Mechanical, °C 600
1090
Melting Completion (Liquidus), °C 1490
1390
Melting Onset (Solidus), °C 1440
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 24
12
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 12
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
30
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 3.0
5.5
Embodied Energy, MJ/kg 44
79
Embodied Water, L/kg 100
200

Common Calculations

PREN (Pitting Resistance) 17
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
220
Resilience: Unit (Modulus of Resilience), kJ/m3 520
92
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
30
Strength to Weight: Bending, points 22
25
Thermal Diffusivity, mm2/s 6.4
3.3
Thermal Shock Resistance, points 19
20

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0 to 0.1
Chromium (Cr), % 10 to 11.5
19 to 22
Copper (Cu), % 0.3 to 1.7
0 to 0.5
Iron (Fe), % 81.3 to 87.7
39.5 to 50.3
Manganese (Mn), % 0 to 0.7
0 to 1.5
Molybdenum (Mo), % 0.25 to 0.6
0
Nickel (Ni), % 0 to 0.5
30 to 34
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0 to 0.010
0.75 to 1.5
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zirconium (Zr), % 0 to 0.010
0