MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. N08810 Stainless Steel

Both ASTM A182 grade F122 and N08810 stainless steel are iron alloys. They have 57% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is N08810 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
33
Fatigue Strength, MPa 320
160
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 450
340
Tensile Strength: Ultimate (UTS), MPa 710
520
Tensile Strength: Yield (Proof), MPa 450
200

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Mechanical, °C 600
1100
Melting Completion (Liquidus), °C 1490
1400
Melting Onset (Solidus), °C 1440
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 24
12
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 12
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
30
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 3.0
5.3
Embodied Energy, MJ/kg 44
76
Embodied Water, L/kg 100
200

Common Calculations

PREN (Pitting Resistance) 17
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
140
Resilience: Unit (Modulus of Resilience), kJ/m3 520
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
18
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 6.4
3.0
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 0 to 0.020
0.15 to 0.6
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0.050 to 0.1
Chromium (Cr), % 10 to 11.5
19 to 23
Copper (Cu), % 0.3 to 1.7
0 to 0.75
Iron (Fe), % 81.3 to 87.7
39.5 to 50.7
Manganese (Mn), % 0 to 0.7
0 to 1.5
Molybdenum (Mo), % 0.25 to 0.6
0
Nickel (Ni), % 0 to 0.5
30 to 35
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0 to 0.010
0.15 to 0.6
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zirconium (Zr), % 0 to 0.010
0