MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. S32050 Stainless Steel

Both ASTM A182 grade F122 and S32050 stainless steel are iron alloys. They have 60% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is S32050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
220
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 23
46
Fatigue Strength, MPa 320
340
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
81
Shear Strength, MPa 450
540
Tensile Strength: Ultimate (UTS), MPa 710
770
Tensile Strength: Yield (Proof), MPa 450
370

Thermal Properties

Latent Heat of Fusion, J/g 270
310
Maximum Temperature: Mechanical, °C 600
1100
Melting Completion (Liquidus), °C 1490
1460
Melting Onset (Solidus), °C 1440
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 24
12
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 3.0
6.0
Embodied Energy, MJ/kg 44
81
Embodied Water, L/kg 100
210

Common Calculations

PREN (Pitting Resistance) 17
48
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
290
Resilience: Unit (Modulus of Resilience), kJ/m3 520
330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
27
Strength to Weight: Bending, points 22
23
Thermal Diffusivity, mm2/s 6.4
3.3
Thermal Shock Resistance, points 19
17

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0 to 0.030
Chromium (Cr), % 10 to 11.5
22 to 24
Copper (Cu), % 0.3 to 1.7
0 to 0.4
Iron (Fe), % 81.3 to 87.7
43.1 to 51.8
Manganese (Mn), % 0 to 0.7
0 to 1.5
Molybdenum (Mo), % 0.25 to 0.6
6.0 to 6.6
Nickel (Ni), % 0 to 0.5
20 to 23
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0.21 to 0.32
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.020
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zirconium (Zr), % 0 to 0.010
0