MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. S41045 Stainless Steel

Both ASTM A182 grade F122 and S41045 stainless steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is S41045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
25
Fatigue Strength, MPa 320
160
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 450
280
Tensile Strength: Ultimate (UTS), MPa 710
430
Tensile Strength: Yield (Proof), MPa 450
230

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Mechanical, °C 600
740
Melting Completion (Liquidus), °C 1490
1450
Melting Onset (Solidus), °C 1440
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 24
29
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
8.5
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.2
Embodied Energy, MJ/kg 44
31
Embodied Water, L/kg 100
100

Common Calculations

PREN (Pitting Resistance) 17
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
92
Resilience: Unit (Modulus of Resilience), kJ/m3 520
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
16
Strength to Weight: Bending, points 22
16
Thermal Diffusivity, mm2/s 6.4
7.8
Thermal Shock Resistance, points 19
16

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0 to 0.030
Chromium (Cr), % 10 to 11.5
12 to 13
Copper (Cu), % 0.3 to 1.7
0
Iron (Fe), % 81.3 to 87.7
83.8 to 88
Manganese (Mn), % 0 to 0.7
0 to 1.0
Molybdenum (Mo), % 0.25 to 0.6
0
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0.040 to 0.1
0 to 0.6
Nitrogen (N), % 0.040 to 0.1
0 to 0.030
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zirconium (Zr), % 0 to 0.010
0