MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F22V vs. ACI-ASTM CA40 Steel

Both ASTM A182 grade F22V and ACI-ASTM CA40 steel are iron alloys. They have 88% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F22V and the bottom bar is ACI-ASTM CA40 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
310
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
10
Fatigue Strength, MPa 320
460
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
76
Tensile Strength: Ultimate (UTS), MPa 670
910
Tensile Strength: Yield (Proof), MPa 460
860

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 460
750
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1430
1500
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
7.5
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.5
2.0
Embodied Energy, MJ/kg 35
28
Embodied Water, L/kg 61
100

Common Calculations

PREN (Pitting Resistance) 5.6
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
89
Resilience: Unit (Modulus of Resilience), kJ/m3 570
1910
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
33
Strength to Weight: Bending, points 22
27
Thermal Diffusivity, mm2/s 11
6.7
Thermal Shock Resistance, points 19
33

Alloy Composition

Boron (B), % 0 to 0.0020
0
Calcium (Ca), % 0 to 0.015
0
Carbon (C), % 0.11 to 0.15
0.2 to 0.4
Chromium (Cr), % 2.0 to 2.5
11.5 to 14
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 94.6 to 96.4
81.5 to 88.3
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0 to 0.5
Nickel (Ni), % 0 to 0.25
0 to 1.0
Niobium (Nb), % 0 to 0.070
0
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.5
Sulfur (S), % 0 to 0.010
0 to 0.040
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.25 to 0.35
0