MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F22V vs. ASTM Grade HT Steel

Both ASTM A182 grade F22V and ASTM grade HT steel are iron alloys. They have 48% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F22V and the bottom bar is ASTM grade HT steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
150
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
4.6
Fatigue Strength, MPa 320
130
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
76
Tensile Strength: Ultimate (UTS), MPa 670
500
Tensile Strength: Yield (Proof), MPa 460
270

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 460
1010
Melting Completion (Liquidus), °C 1470
1390
Melting Onset (Solidus), °C 1430
1340
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
12
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
31
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 2.5
5.4
Embodied Energy, MJ/kg 35
76
Embodied Water, L/kg 61
190

Common Calculations

PREN (Pitting Resistance) 5.6
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
19
Resilience: Unit (Modulus of Resilience), kJ/m3 570
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 11
3.2
Thermal Shock Resistance, points 19
12

Alloy Composition

Boron (B), % 0 to 0.0020
0
Calcium (Ca), % 0 to 0.015
0
Carbon (C), % 0.11 to 0.15
0.35 to 0.75
Chromium (Cr), % 2.0 to 2.5
15 to 19
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 94.6 to 96.4
38.2 to 51.7
Manganese (Mn), % 0.3 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.9 to 1.1
0 to 0.5
Nickel (Ni), % 0 to 0.25
33 to 37
Niobium (Nb), % 0 to 0.070
0
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 2.5
Sulfur (S), % 0 to 0.010
0 to 0.040
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.25 to 0.35
0