MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F22V vs. EN 1.0471 Steel

Both ASTM A182 grade F22V and EN 1.0471 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F22V and the bottom bar is EN 1.0471 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
23
Fatigue Strength, MPa 320
270
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Shear Strength, MPa 420
360
Tensile Strength: Ultimate (UTS), MPa 670
580
Tensile Strength: Yield (Proof), MPa 460
380

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 460
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
52
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
2.2
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.5
1.5
Embodied Energy, MJ/kg 35
20
Embodied Water, L/kg 61
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 570
390
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
20
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 19
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.060
Boron (B), % 0 to 0.0020
0
Calcium (Ca), % 0 to 0.015
0
Carbon (C), % 0.11 to 0.15
0 to 0.22
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 94.6 to 96.4
97.4 to 98.8
Manganese (Mn), % 0.3 to 0.6
1.0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0 to 0.070
0.015 to 0.1
Phosphorus (P), % 0 to 0.015
0 to 0.025
Silicon (Si), % 0 to 0.1
0.15 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.25 to 0.35
0