MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F22V vs. EN 1.8515 Steel

Both ASTM A182 grade F22V and EN 1.8515 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F22V and the bottom bar is EN 1.8515 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
340
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
11
Fatigue Strength, MPa 320
580
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
74
Shear Strength, MPa 420
680
Tensile Strength: Ultimate (UTS), MPa 670
1130
Tensile Strength: Yield (Proof), MPa 460
940

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 460
470
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
3.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.5
1.6
Embodied Energy, MJ/kg 35
22
Embodied Water, L/kg 61
60

Common Calculations

PREN (Pitting Resistance) 5.6
4.4
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 570
2310
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
40
Strength to Weight: Bending, points 22
31
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 19
33

Alloy Composition

Boron (B), % 0 to 0.0020
0
Calcium (Ca), % 0 to 0.015
0
Carbon (C), % 0.11 to 0.15
0.28 to 0.35
Chromium (Cr), % 2.0 to 2.5
2.8 to 3.3
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 94.6 to 96.4
94.7 to 96.5
Manganese (Mn), % 0.3 to 0.6
0.4 to 0.7
Molybdenum (Mo), % 0.9 to 1.1
0.3 to 0.5
Nickel (Ni), % 0 to 0.25
0 to 0.3
Niobium (Nb), % 0 to 0.070
0
Phosphorus (P), % 0 to 0.015
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0 to 0.010
0 to 0.035
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.25 to 0.35
0