MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F22V vs. SAE-AISI 1019 Steel

Both ASTM A182 grade F22V and SAE-AISI 1019 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F22V and the bottom bar is SAE-AISI 1019 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
130 to 140
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
17 to 29
Fatigue Strength, MPa 320
190 to 290
Poisson's Ratio 0.29
0.29
Reduction in Area, % 50
46 to 56
Shear Modulus, GPa 74
73
Shear Strength, MPa 420
300 to 320
Tensile Strength: Ultimate (UTS), MPa 670
470 to 520
Tensile Strength: Yield (Proof), MPa 460
250 to 430

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 460
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
52
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
1.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.5
1.4
Embodied Energy, MJ/kg 35
18
Embodied Water, L/kg 61
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
82 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 570
160 to 500
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
17 to 18
Strength to Weight: Bending, points 22
17 to 18
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 19
15 to 16

Alloy Composition

Boron (B), % 0 to 0.0020
0
Calcium (Ca), % 0 to 0.015
0
Carbon (C), % 0.11 to 0.15
0.15 to 0.2
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 94.6 to 96.4
98.7 to 99.15
Manganese (Mn), % 0.3 to 0.6
0.7 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0 to 0.070
0
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.010
0 to 0.050
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.25 to 0.35
0