MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F22V vs. C23000 Brass

ASTM A182 grade F22V belongs to the iron alloys classification, while C23000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F22V and the bottom bar is C23000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21
2.9 to 47
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
42
Shear Strength, MPa 420
220 to 340
Tensile Strength: Ultimate (UTS), MPa 670
280 to 590
Tensile Strength: Yield (Proof), MPa 460
83 to 480

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 460
170
Melting Completion (Liquidus), °C 1470
1030
Melting Onset (Solidus), °C 1430
990
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
160
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
37
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
39

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
28
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 2.5
2.6
Embodied Energy, MJ/kg 35
43
Embodied Water, L/kg 61
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
6.2 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 570
31 to 1040
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 24
8.9 to 19
Strength to Weight: Bending, points 22
11 to 18
Thermal Diffusivity, mm2/s 11
48
Thermal Shock Resistance, points 19
9.4 to 20

Alloy Composition

Boron (B), % 0 to 0.0020
0
Calcium (Ca), % 0 to 0.015
0
Carbon (C), % 0.11 to 0.15
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.2
84 to 86
Iron (Fe), % 94.6 to 96.4
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0 to 0.070
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.25 to 0.35
0
Zinc (Zn), % 0
13.7 to 16
Residuals, % 0
0 to 0.2