MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F22V vs. C95800 Bronze

ASTM A182 grade F22V belongs to the iron alloys classification, while C95800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F22V and the bottom bar is C95800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 21
22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
44
Tensile Strength: Ultimate (UTS), MPa 670
660
Tensile Strength: Yield (Proof), MPa 460
270

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 460
230
Melting Completion (Liquidus), °C 1470
1060
Melting Onset (Solidus), °C 1430
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 39
36
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
29
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 2.5
3.4
Embodied Energy, MJ/kg 35
55
Embodied Water, L/kg 61
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 570
310
Stiffness to Weight: Axial, points 13
7.9
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 24
22
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 11
9.9
Thermal Shock Resistance, points 19
23

Alloy Composition

Aluminum (Al), % 0
8.5 to 9.5
Boron (B), % 0 to 0.0020
0
Calcium (Ca), % 0 to 0.015
0
Carbon (C), % 0.11 to 0.15
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.2
79 to 83.2
Iron (Fe), % 94.6 to 96.4
3.5 to 4.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.3 to 0.6
0.8 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
4.0 to 5.0
Niobium (Nb), % 0 to 0.070
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.1
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.25 to 0.35
0
Residuals, % 0
0 to 0.5