MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F22V vs. S41050 Stainless Steel

Both ASTM A182 grade F22V and S41050 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F22V and the bottom bar is S41050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
25
Fatigue Strength, MPa 320
160
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
76
Shear Strength, MPa 420
300
Tensile Strength: Ultimate (UTS), MPa 670
470
Tensile Strength: Yield (Proof), MPa 460
230

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 460
720
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
27
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
7.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.5
1.9
Embodied Energy, MJ/kg 35
27
Embodied Water, L/kg 61
97

Common Calculations

PREN (Pitting Resistance) 5.6
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
98
Resilience: Unit (Modulus of Resilience), kJ/m3 570
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
17
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 11
7.2
Thermal Shock Resistance, points 19
17

Alloy Composition

Boron (B), % 0 to 0.0020
0
Calcium (Ca), % 0 to 0.015
0
Carbon (C), % 0.11 to 0.15
0 to 0.040
Chromium (Cr), % 2.0 to 2.5
10.5 to 12.5
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 94.6 to 96.4
84.2 to 88.9
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.25
0.6 to 1.1
Niobium (Nb), % 0 to 0.070
0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.015
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0.25 to 0.35
0