MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F24 vs. S31260 Stainless Steel

Both ASTM A182 grade F24 and S31260 stainless steel are iron alloys. They have 68% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F24 and the bottom bar is S31260 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
260
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
23
Fatigue Strength, MPa 330
370
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 74
80
Shear Strength, MPa 420
500
Tensile Strength: Ultimate (UTS), MPa 670
790
Tensile Strength: Yield (Proof), MPa 460
540

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 460
1100
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
16
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
20
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.3
3.9
Embodied Energy, MJ/kg 33
53
Embodied Water, L/kg 61
180

Common Calculations

PREN (Pitting Resistance) 6.7
39
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
160
Resilience: Unit (Modulus of Resilience), kJ/m3 570
720
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
28
Strength to Weight: Bending, points 22
24
Thermal Diffusivity, mm2/s 11
4.3
Thermal Shock Resistance, points 19
22

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0015 to 0.0070
0
Carbon (C), % 0.050 to 0.1
0 to 0.030
Chromium (Cr), % 2.2 to 2.6
24 to 26
Copper (Cu), % 0
0.2 to 0.8
Iron (Fe), % 94.5 to 96.1
59.6 to 67.6
Manganese (Mn), % 0.3 to 0.7
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
2.5 to 3.5
Nickel (Ni), % 0
5.5 to 7.5
Nitrogen (N), % 0 to 0.12
0.1 to 0.3
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0.15 to 0.45
0 to 0.75
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0.060 to 0.1
0
Tungsten (W), % 0
0.1 to 0.5
Vanadium (V), % 0.2 to 0.3
0