MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3V vs. EN 1.7336 Steel

Both ASTM A182 grade F3V and EN 1.7336 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3V and the bottom bar is EN 1.7336 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
22
Fatigue Strength, MPa 330
240 to 310
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Shear Strength, MPa 410
370
Tensile Strength: Ultimate (UTS), MPa 660
590
Tensile Strength: Yield (Proof), MPa 470
340 to 440

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 470
430
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
3.1
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.3
1.6
Embodied Energy, MJ/kg 33
21
Embodied Water, L/kg 63
53

Common Calculations

PREN (Pitting Resistance) 6.3
3.2
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 590
310 to 510
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
21
Strength to Weight: Bending, points 21
20
Thermal Diffusivity, mm2/s 10
11
Thermal Shock Resistance, points 19
17

Alloy Composition

Boron (B), % 0.0010 to 0.0030
0
Carbon (C), % 0.050 to 0.18
0 to 0.17
Chromium (Cr), % 2.8 to 3.2
1.0 to 1.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 94.4 to 95.7
95.6 to 97.7
Manganese (Mn), % 0.3 to 0.6
0.4 to 0.65
Molybdenum (Mo), % 0.9 to 1.1
0.45 to 0.65
Nickel (Ni), % 0
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.020
0 to 0.015
Silicon (Si), % 0 to 0.1
0.5 to 0.8
Sulfur (S), % 0 to 0.020
0 to 0.0050
Titanium (Ti), % 0.015 to 0.035
0
Vanadium (V), % 0.2 to 0.3
0