MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3V vs. EN 1.8865 Steel

Both ASTM A182 grade F3V and EN 1.8865 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3V and the bottom bar is EN 1.8865 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
19
Fatigue Strength, MPa 330
340
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Shear Strength, MPa 410
410
Tensile Strength: Ultimate (UTS), MPa 660
660
Tensile Strength: Yield (Proof), MPa 470
500

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 470
420
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
3.2
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.3
1.8
Embodied Energy, MJ/kg 33
24
Embodied Water, L/kg 63
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 590
670
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
23
Strength to Weight: Bending, points 21
21
Thermal Diffusivity, mm2/s 10
10
Thermal Shock Resistance, points 19
19

Alloy Composition

Boron (B), % 0.0010 to 0.0030
0 to 0.0050
Carbon (C), % 0.050 to 0.18
0 to 0.18
Chromium (Cr), % 2.8 to 3.2
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 94.4 to 95.7
93.6 to 100
Manganese (Mn), % 0.3 to 0.6
0 to 1.7
Molybdenum (Mo), % 0.9 to 1.1
0 to 0.7
Nickel (Ni), % 0
0 to 1.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.0050
Titanium (Ti), % 0.015 to 0.035
0 to 0.050
Vanadium (V), % 0.2 to 0.3
0 to 0.080
Zirconium (Zr), % 0
0 to 0.15