MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3V vs. SAE-AISI 1064 Steel

Both ASTM A182 grade F3V and SAE-AISI 1064 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3V and the bottom bar is SAE-AISI 1064 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
220
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
12 to 13
Fatigue Strength, MPa 330
300
Poisson's Ratio 0.29
0.29
Reduction in Area, % 51
42 to 43
Shear Modulus, GPa 74
72
Shear Strength, MPa 410
430 to 440
Tensile Strength: Ultimate (UTS), MPa 660
720 to 730
Tensile Strength: Yield (Proof), MPa 470
470 to 480

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 470
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
51
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.3
1.4
Embodied Energy, MJ/kg 33
19
Embodied Water, L/kg 63
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
79 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 590
600 to 630
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
25 to 26
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 10
14
Thermal Shock Resistance, points 19
25

Alloy Composition

Boron (B), % 0.0010 to 0.0030
0
Carbon (C), % 0.050 to 0.18
0.6 to 0.7
Chromium (Cr), % 2.8 to 3.2
0
Iron (Fe), % 94.4 to 95.7
98.4 to 98.9
Manganese (Mn), % 0.3 to 0.6
0.5 to 0.8
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.020
0 to 0.050
Titanium (Ti), % 0.015 to 0.035
0
Vanadium (V), % 0.2 to 0.3
0