MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3V vs. C11000 Copper

ASTM A182 grade F3V belongs to the iron alloys classification, while C11000 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3V and the bottom bar is C11000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
1.5 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 410
150 to 230
Tensile Strength: Ultimate (UTS), MPa 660
220 to 410
Tensile Strength: Yield (Proof), MPa 470
69 to 390

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 470
200
Melting Completion (Liquidus), °C 1470
1080
Melting Onset (Solidus), °C 1430
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
100
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
100

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
31
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 2.3
2.6
Embodied Energy, MJ/kg 33
41
Embodied Water, L/kg 63
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
6.1 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 590
21 to 640
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23
6.8 to 13
Strength to Weight: Bending, points 21
9.0 to 14
Thermal Diffusivity, mm2/s 10
110
Thermal Shock Resistance, points 19
8.0 to 15

Alloy Composition

Boron (B), % 0.0010 to 0.0030
0
Carbon (C), % 0.050 to 0.18
0
Chromium (Cr), % 2.8 to 3.2
0
Copper (Cu), % 0
99.9 to 100
Iron (Fe), % 94.4 to 95.7
0
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0.015 to 0.035
0
Vanadium (V), % 0.2 to 0.3
0
Residuals, % 0
0 to 0.1