MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3V vs. C85800 Brass

ASTM A182 grade F3V belongs to the iron alloys classification, while C85800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3V and the bottom bar is C85800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 20
15
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 660
380
Tensile Strength: Yield (Proof), MPa 470
210

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 470
120
Melting Completion (Liquidus), °C 1470
900
Melting Onset (Solidus), °C 1430
870
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 39
84
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
20
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
22

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
24
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 2.3
2.8
Embodied Energy, MJ/kg 33
47
Embodied Water, L/kg 63
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
48
Resilience: Unit (Modulus of Resilience), kJ/m3 590
210
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 23
13
Strength to Weight: Bending, points 21
15
Thermal Diffusivity, mm2/s 10
27
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.55
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Boron (B), % 0.0010 to 0.0030
0
Carbon (C), % 0.050 to 0.18
0
Chromium (Cr), % 2.8 to 3.2
0
Copper (Cu), % 0
57 to 69
Iron (Fe), % 94.4 to 95.7
0 to 0.5
Lead (Pb), % 0
0 to 1.5
Manganese (Mn), % 0.3 to 0.6
0 to 0.25
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.020
0 to 0.010
Silicon (Si), % 0 to 0.1
0 to 0.25
Sulfur (S), % 0 to 0.020
0 to 0.050
Tin (Sn), % 0
0 to 1.5
Titanium (Ti), % 0.015 to 0.035
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
31 to 41
Residuals, % 0
0 to 1.3