MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3V vs. C85900 Brass

ASTM A182 grade F3V belongs to the iron alloys classification, while C85900 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3V and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
85
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 20
30
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 660
460
Tensile Strength: Yield (Proof), MPa 470
190

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 470
130
Melting Completion (Liquidus), °C 1470
830
Melting Onset (Solidus), °C 1430
790
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
89
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
25
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
28

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
24
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 2.3
2.9
Embodied Energy, MJ/kg 33
49
Embodied Water, L/kg 63
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 590
170
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 23
16
Strength to Weight: Bending, points 21
17
Thermal Diffusivity, mm2/s 10
29
Thermal Shock Resistance, points 19
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0.0010 to 0.0030
0 to 0.2
Carbon (C), % 0.050 to 0.18
0
Chromium (Cr), % 2.8 to 3.2
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 94.4 to 95.7
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.3 to 0.6
0 to 0.010
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 1.5
Phosphorus (P), % 0 to 0.020
0 to 0.010
Silicon (Si), % 0 to 0.1
0 to 0.25
Sulfur (S), % 0 to 0.020
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Titanium (Ti), % 0.015 to 0.035
0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7