MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3V vs. S30415 Stainless Steel

Both ASTM A182 grade F3V and S30415 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 73% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3V and the bottom bar is S30415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
45
Fatigue Strength, MPa 330
300
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Shear Strength, MPa 410
470
Tensile Strength: Ultimate (UTS), MPa 660
670
Tensile Strength: Yield (Proof), MPa 470
330

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 470
940
Melting Completion (Liquidus), °C 1470
1410
Melting Onset (Solidus), °C 1430
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
21
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 4.2
15
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.3
3.1
Embodied Energy, MJ/kg 33
43
Embodied Water, L/kg 63
140

Common Calculations

PREN (Pitting Resistance) 6.3
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
250
Resilience: Unit (Modulus of Resilience), kJ/m3 590
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
24
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 10
5.6
Thermal Shock Resistance, points 19
15

Alloy Composition

Boron (B), % 0.0010 to 0.0030
0
Carbon (C), % 0.050 to 0.18
0.040 to 0.060
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 2.8 to 3.2
18 to 19
Iron (Fe), % 94.4 to 95.7
67.8 to 71.8
Manganese (Mn), % 0.3 to 0.6
0 to 0.8
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
9.0 to 10
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.1
1.0 to 2.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0.015 to 0.035
0
Vanadium (V), % 0.2 to 0.3
0