MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F5 vs. ASTM Grade LCB Steel

Both ASTM A182 grade F5 and ASTM grade LCB steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F5 and the bottom bar is ASTM grade LCB steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
27
Fatigue Strength, MPa 220
200
Poisson's Ratio 0.29
0.29
Reduction in Area, % 40
40
Shear Modulus, GPa 74
72
Tensile Strength: Ultimate (UTS), MPa 540
540
Tensile Strength: Yield (Proof), MPa 310
270

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 510
400
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
51
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.8
1.4
Embodied Energy, MJ/kg 24
18
Embodied Water, L/kg 69
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 260
200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
19
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 15
17

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.3
Chromium (Cr), % 4.0 to 6.0
0
Iron (Fe), % 91.5 to 95.3
97 to 100
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.44 to 0.65
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.045
Residuals, % 0
0 to 1.0