MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F5 vs. C85400 Brass

ASTM A182 grade F5 belongs to the iron alloys classification, while C85400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F5 and the bottom bar is C85400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
55
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 22
23
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 540
220
Tensile Strength: Yield (Proof), MPa 310
85

Thermal Properties

Latent Heat of Fusion, J/g 260
180
Maximum Temperature: Mechanical, °C 510
130
Melting Completion (Liquidus), °C 1460
940
Melting Onset (Solidus), °C 1420
940
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 40
89
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
20
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
22

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
25
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.8
2.8
Embodied Energy, MJ/kg 24
46
Embodied Water, L/kg 69
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
40
Resilience: Unit (Modulus of Resilience), kJ/m3 260
35
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19
7.5
Strength to Weight: Bending, points 19
9.9
Thermal Diffusivity, mm2/s 11
28
Thermal Shock Resistance, points 15
7.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0
65 to 70
Iron (Fe), % 91.5 to 95.3
0 to 0.7
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.44 to 0.65
0
Nickel (Ni), % 0 to 0.5
0 to 1.0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.050
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
24 to 32
Residuals, % 0
0 to 1.1