MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F5a vs. EN 1.8888 Steel

Both ASTM A182 grade F5a and EN 1.8888 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F5a and the bottom bar is EN 1.8888 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
250
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
16
Fatigue Strength, MPa 380
470
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Shear Strength, MPa 450
510
Tensile Strength: Ultimate (UTS), MPa 710
830
Tensile Strength: Yield (Proof), MPa 520
720

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Maximum Temperature: Mechanical, °C 510
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.2
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
3.7
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.8
1.9
Embodied Energy, MJ/kg 24
26
Embodied Water, L/kg 69
54

Common Calculations

PREN (Pitting Resistance) 6.8
2.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
130
Resilience: Unit (Modulus of Resilience), kJ/m3 700
1370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
29
Strength to Weight: Bending, points 23
25
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 20
24

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.25
0 to 0.2
Chromium (Cr), % 4.0 to 6.0
0 to 1.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 91.4 to 95.6
91.9 to 100
Manganese (Mn), % 0 to 0.6
0 to 1.7
Molybdenum (Mo), % 0.44 to 0.65
0 to 0.7
Nickel (Ni), % 0 to 0.5
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.0050
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zirconium (Zr), % 0
0 to 0.15