MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F5a vs. CC140C Copper

ASTM A182 grade F5a belongs to the iron alloys classification, while CC140C copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F5a and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
110
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 25
11
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
44
Tensile Strength: Ultimate (UTS), MPa 710
340
Tensile Strength: Yield (Proof), MPa 520
230

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 510
200
Melting Completion (Liquidus), °C 1460
1100
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 40
310
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.2
77
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
78

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.8
2.6
Embodied Energy, MJ/kg 24
41
Embodied Water, L/kg 69
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
34
Resilience: Unit (Modulus of Resilience), kJ/m3 700
220
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
10
Strength to Weight: Bending, points 23
12
Thermal Diffusivity, mm2/s 11
89
Thermal Shock Resistance, points 20
12

Alloy Composition

Carbon (C), % 0 to 0.25
0
Chromium (Cr), % 4.0 to 6.0
0.4 to 1.2
Copper (Cu), % 0
98.8 to 99.6
Iron (Fe), % 91.4 to 95.6
0
Manganese (Mn), % 0 to 0.6
0
Molybdenum (Mo), % 0.44 to 0.65
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.030
0