MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F6b vs. 7076 Aluminum

ASTM A182 grade F6b belongs to the iron alloys classification, while 7076 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F6b and the bottom bar is 7076 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
160
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 18
6.2
Fatigue Strength, MPa 440
170
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
27
Shear Strength, MPa 530
310
Tensile Strength: Ultimate (UTS), MPa 850
530
Tensile Strength: Yield (Proof), MPa 710
460

Thermal Properties

Latent Heat of Fusion, J/g 280
380
Maximum Temperature: Mechanical, °C 750
170
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1400
460
Specific Heat Capacity, J/kg-K 480
860
Thermal Conductivity, W/m-K 25
140
Thermal Expansion, µm/m-K 10
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
35
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
100

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
9.5
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.2
8.0
Embodied Energy, MJ/kg 30
150
Embodied Water, L/kg 100
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
31
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
1510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 30
49
Strength to Weight: Bending, points 26
48
Thermal Diffusivity, mm2/s 6.7
54
Thermal Shock Resistance, points 31
23

Alloy Composition

Aluminum (Al), % 0
86.9 to 91.2
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0 to 0.5
0.3 to 1.0
Iron (Fe), % 81.2 to 87.1
0 to 0.6
Magnesium (Mg), % 0
1.2 to 2.0
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Molybdenum (Mo), % 0.4 to 0.6
0
Nickel (Ni), % 1.0 to 2.0
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
7.0 to 8.0
Residuals, % 0
0 to 0.15