MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F6b vs. EN 1.8879 Steel

Both ASTM A182 grade F6b and EN 1.8879 steel are iron alloys. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F6b and the bottom bar is EN 1.8879 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
250
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18
16
Fatigue Strength, MPa 440
460
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 530
510
Tensile Strength: Ultimate (UTS), MPa 850
830
Tensile Strength: Yield (Proof), MPa 710
710

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 750
420
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
40
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
3.7
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.2
1.9
Embodied Energy, MJ/kg 30
26
Embodied Water, L/kg 100
54

Common Calculations

PREN (Pitting Resistance) 14
2.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
1320
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 30
29
Strength to Weight: Bending, points 26
25
Thermal Diffusivity, mm2/s 6.7
11
Thermal Shock Resistance, points 31
24

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.15
0 to 0.2
Chromium (Cr), % 11.5 to 13.5
0 to 1.5
Copper (Cu), % 0 to 0.5
0 to 0.3
Iron (Fe), % 81.2 to 87.1
91.9 to 100
Manganese (Mn), % 0 to 1.0
0 to 1.7
Molybdenum (Mo), % 0.4 to 0.6
0 to 0.7
Nickel (Ni), % 1.0 to 2.0
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zirconium (Zr), % 0
0 to 0.15