MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F6b vs. Grade 1 Titanium

ASTM A182 grade F6b belongs to the iron alloys classification, while grade 1 titanium belongs to the titanium alloys. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F6b and the bottom bar is grade 1 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
120
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18
28
Fatigue Strength, MPa 440
170
Poisson's Ratio 0.28
0.32
Reduction in Area, % 51
36
Shear Modulus, GPa 76
39
Shear Strength, MPa 530
200
Tensile Strength: Ultimate (UTS), MPa 850
310
Tensile Strength: Yield (Proof), MPa 710
220

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 750
320
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 25
20
Thermal Expansion, µm/m-K 10
8.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.2
31
Embodied Energy, MJ/kg 30
510
Embodied Water, L/kg 100
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
79
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 30
19
Strength to Weight: Bending, points 26
23
Thermal Diffusivity, mm2/s 6.7
8.2
Thermal Shock Resistance, points 31
24

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 81.2 to 87.1
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.4 to 0.6
0
Nickel (Ni), % 1.0 to 2.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
99.095 to 100
Residuals, % 0
0 to 0.4