MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F6b vs. Grade 6 Titanium

ASTM A182 grade F6b belongs to the iron alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F6b and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 18
11
Fatigue Strength, MPa 440
290
Poisson's Ratio 0.28
0.32
Reduction in Area, % 51
27
Shear Modulus, GPa 76
39
Shear Strength, MPa 530
530
Tensile Strength: Ultimate (UTS), MPa 850
890
Tensile Strength: Yield (Proof), MPa 710
840

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 750
310
Melting Completion (Liquidus), °C 1450
1580
Melting Onset (Solidus), °C 1400
1530
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 25
7.8
Thermal Expansion, µm/m-K 10
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.2
30
Embodied Energy, MJ/kg 30
480
Embodied Water, L/kg 100
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
92
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
3390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 30
55
Strength to Weight: Bending, points 26
46
Thermal Diffusivity, mm2/s 6.7
3.2
Thermal Shock Resistance, points 31
65

Alloy Composition

Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 81.2 to 87.1
0 to 0.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.4 to 0.6
0
Nickel (Ni), % 1.0 to 2.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.8 to 94
Residuals, % 0
0 to 0.4