MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F6b vs. C28500 Muntz Metal

ASTM A182 grade F6b belongs to the iron alloys classification, while C28500 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F6b and the bottom bar is C28500 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 18
20
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 76
40
Shear Strength, MPa 530
320
Tensile Strength: Ultimate (UTS), MPa 850
520
Tensile Strength: Yield (Proof), MPa 710
380

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 750
110
Melting Completion (Liquidus), °C 1450
900
Melting Onset (Solidus), °C 1400
890
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 25
100
Thermal Expansion, µm/m-K 10
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
29
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
33

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
22
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.2
2.7
Embodied Energy, MJ/kg 30
46
Embodied Water, L/kg 100
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
94
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
700
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 30
18
Strength to Weight: Bending, points 26
18
Thermal Diffusivity, mm2/s 6.7
33
Thermal Shock Resistance, points 31
17

Alloy Composition

Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0 to 0.5
57 to 59
Iron (Fe), % 81.2 to 87.1
0 to 0.35
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.4 to 0.6
0
Nickel (Ni), % 1.0 to 2.0
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Zinc (Zn), % 0
39.5 to 43
Residuals, % 0
0 to 0.9