MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F6b vs. C53800 Bronze

ASTM A182 grade F6b belongs to the iron alloys classification, while C53800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F6b and the bottom bar is C53800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18
2.3
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
40
Shear Strength, MPa 530
470
Tensile Strength: Ultimate (UTS), MPa 850
830
Tensile Strength: Yield (Proof), MPa 710
660

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 750
160
Melting Completion (Liquidus), °C 1450
980
Melting Onset (Solidus), °C 1400
800
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 25
61
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
37
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.2
3.9
Embodied Energy, MJ/kg 30
64
Embodied Water, L/kg 100
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
18
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
2020
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 30
26
Strength to Weight: Bending, points 26
22
Thermal Diffusivity, mm2/s 6.7
19
Thermal Shock Resistance, points 31
31

Alloy Composition

Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0 to 0.5
85.1 to 86.5
Iron (Fe), % 81.2 to 87.1
0 to 0.030
Lead (Pb), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.060
Molybdenum (Mo), % 0.4 to 0.6
0
Nickel (Ni), % 1.0 to 2.0
0 to 0.030
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
13.1 to 13.9
Zinc (Zn), % 0
0 to 0.12
Residuals, % 0
0 to 0.2