MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F6b vs. C67300 Bronze

ASTM A182 grade F6b belongs to the iron alloys classification, while C67300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F6b and the bottom bar is C67300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18
12
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
41
Shear Strength, MPa 530
300
Tensile Strength: Ultimate (UTS), MPa 850
500
Tensile Strength: Yield (Proof), MPa 710
340

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 750
130
Melting Completion (Liquidus), °C 1450
870
Melting Onset (Solidus), °C 1400
830
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 25
95
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
22
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
25

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.2
2.7
Embodied Energy, MJ/kg 30
46
Embodied Water, L/kg 100
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
55
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
550
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 30
17
Strength to Weight: Bending, points 26
17
Thermal Diffusivity, mm2/s 6.7
30
Thermal Shock Resistance, points 31
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0 to 0.5
58 to 63
Iron (Fe), % 81.2 to 87.1
0 to 0.5
Lead (Pb), % 0
0.4 to 3.0
Manganese (Mn), % 0 to 1.0
2.0 to 3.5
Molybdenum (Mo), % 0.4 to 0.6
0
Nickel (Ni), % 1.0 to 2.0
0 to 0.25
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0.5 to 1.5
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
27.2 to 39.1
Residuals, % 0
0 to 0.5