MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F6b vs. C93400 Bronze

ASTM A182 grade F6b belongs to the iron alloys classification, while C93400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F6b and the bottom bar is C93400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 18
9.1
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 76
38
Tensile Strength: Ultimate (UTS), MPa 850
270
Tensile Strength: Yield (Proof), MPa 710
150

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 750
150
Melting Completion (Liquidus), °C 1450
950
Melting Onset (Solidus), °C 1400
850
Specific Heat Capacity, J/kg-K 480
350
Thermal Conductivity, W/m-K 25
58
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
12
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
12

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
32
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.2
3.3
Embodied Energy, MJ/kg 30
54
Embodied Water, L/kg 100
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
21
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
120
Stiffness to Weight: Axial, points 14
6.3
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 30
8.3
Strength to Weight: Bending, points 26
10
Thermal Diffusivity, mm2/s 6.7
18
Thermal Shock Resistance, points 31
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0 to 0.5
82 to 85
Iron (Fe), % 81.2 to 87.1
0 to 0.2
Lead (Pb), % 0
7.0 to 9.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.4 to 0.6
0
Nickel (Ni), % 1.0 to 2.0
0 to 1.0
Phosphorus (P), % 0 to 0.020
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.020
0 to 0.080
Tin (Sn), % 0
7.0 to 9.0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0