MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F6b vs. C93700 Bronze

ASTM A182 grade F6b belongs to the iron alloys classification, while C93700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F6b and the bottom bar is C93700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
99
Elongation at Break, % 18
20
Fatigue Strength, MPa 440
90
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 76
37
Tensile Strength: Ultimate (UTS), MPa 850
240
Tensile Strength: Yield (Proof), MPa 710
130

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 750
140
Melting Completion (Liquidus), °C 1450
930
Melting Onset (Solidus), °C 1400
760
Specific Heat Capacity, J/kg-K 480
350
Thermal Conductivity, W/m-K 25
47
Thermal Expansion, µm/m-K 10
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
10
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
10

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.2
3.5
Embodied Energy, MJ/kg 30
57
Embodied Water, L/kg 100
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
40
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
79
Stiffness to Weight: Axial, points 14
6.2
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 30
7.5
Strength to Weight: Bending, points 26
9.6
Thermal Diffusivity, mm2/s 6.7
15
Thermal Shock Resistance, points 31
9.4

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0 to 0.5
78 to 82
Iron (Fe), % 81.2 to 87.1
0 to 0.15
Lead (Pb), % 0
8.0 to 11
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.4 to 0.6
0
Nickel (Ni), % 1.0 to 2.0
0 to 1.0
Phosphorus (P), % 0 to 0.020
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.020
0 to 0.080
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0