MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F6b vs. S32304 Stainless Steel

Both ASTM A182 grade F6b and S32304 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 86% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F6b and the bottom bar is S32304 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
250
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 18
28
Fatigue Strength, MPa 440
330
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
79
Shear Strength, MPa 530
440
Tensile Strength: Ultimate (UTS), MPa 850
670
Tensile Strength: Yield (Proof), MPa 710
460

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 390
440
Maximum Temperature: Mechanical, °C 750
1050
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
15
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
14
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.2
2.8
Embodied Energy, MJ/kg 30
40
Embodied Water, L/kg 100
160

Common Calculations

PREN (Pitting Resistance) 14
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 30
24
Strength to Weight: Bending, points 26
22
Thermal Diffusivity, mm2/s 6.7
4.0
Thermal Shock Resistance, points 31
18

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 11.5 to 13.5
21.5 to 24.5
Copper (Cu), % 0 to 0.5
0.050 to 0.6
Iron (Fe), % 81.2 to 87.1
65 to 75.4
Manganese (Mn), % 0 to 1.0
0 to 2.5
Molybdenum (Mo), % 0.4 to 0.6
0.050 to 0.6
Nickel (Ni), % 1.0 to 2.0
3.0 to 5.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030