MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F911 vs. 2014A Aluminum

ASTM A182 grade F911 belongs to the iron alloys classification, while 2014A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F911 and the bottom bar is 2014A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 20
6.2 to 16
Fatigue Strength, MPa 350
93 to 150
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Shear Strength, MPa 430
130 to 290
Tensile Strength: Ultimate (UTS), MPa 690
210 to 490
Tensile Strength: Yield (Proof), MPa 500
110 to 430

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 600
210
Melting Completion (Liquidus), °C 1480
640
Melting Onset (Solidus), °C 1440
510
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 26
150
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
37
Electrical Conductivity: Equal Weight (Specific), % IACS 10
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 2.8
8.1
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 90
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 650
85 to 1300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 24
19 to 45
Strength to Weight: Bending, points 22
26 to 46
Thermal Diffusivity, mm2/s 6.9
55
Thermal Shock Resistance, points 19
9.0 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.020
90.8 to 95
Boron (B), % 0.00030 to 0.0060
0
Carbon (C), % 0.090 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0 to 0.1
Copper (Cu), % 0
3.9 to 5.0
Iron (Fe), % 86.2 to 88.9
0 to 0.5
Magnesium (Mg), % 0
0.2 to 0.8
Manganese (Mn), % 0.3 to 0.6
0.4 to 1.2
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.4
0 to 0.1
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.040 to 0.090
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.1 to 0.5
0.5 to 0.9
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0 to 0.15
Tungsten (W), % 0.9 to 1.1
0
Vanadium (V), % 0.18 to 0.25
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0 to 0.010
0 to 0.2
Residuals, % 0
0 to 0.15