MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F911 vs. 295.0 Aluminum

ASTM A182 grade F911 belongs to the iron alloys classification, while 295.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F911 and the bottom bar is 295.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
60 to 93
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 20
2.0 to 7.2
Fatigue Strength, MPa 350
44 to 55
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Shear Strength, MPa 430
180 to 230
Tensile Strength: Ultimate (UTS), MPa 690
230 to 280
Tensile Strength: Yield (Proof), MPa 500
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 600
170
Melting Completion (Liquidus), °C 1480
640
Melting Onset (Solidus), °C 1440
530
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 26
140
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
35
Electrical Conductivity: Equal Weight (Specific), % IACS 10
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 2.8
7.9
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 90
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
5.2 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 650
77 to 340
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 24
21 to 26
Strength to Weight: Bending, points 22
27 to 32
Thermal Diffusivity, mm2/s 6.9
54
Thermal Shock Resistance, points 19
9.8 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.020
91.4 to 95.3
Boron (B), % 0.00030 to 0.0060
0
Carbon (C), % 0.090 to 0.13
0
Chromium (Cr), % 8.5 to 9.5
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 86.2 to 88.9
0 to 1.0
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0.3 to 0.6
0 to 0.35
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.040 to 0.090
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.1 to 0.5
0.7 to 1.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0 to 0.25
Tungsten (W), % 0.9 to 1.1
0
Vanadium (V), % 0.18 to 0.25
0
Zinc (Zn), % 0
0 to 0.35
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.15