MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F911 vs. ACI-ASTM CF3MN Steel

Both ASTM A182 grade F911 and ACI-ASTM CF3MN steel are iron alloys. They have 76% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F911 and the bottom bar is ACI-ASTM CF3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
39
Fatigue Strength, MPa 350
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Tensile Strength: Ultimate (UTS), MPa 690
580
Tensile Strength: Yield (Proof), MPa 500
290

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Mechanical, °C 600
1010
Melting Completion (Liquidus), °C 1480
1440
Melting Onset (Solidus), °C 1440
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.9
Embodied Energy, MJ/kg 40
53
Embodied Water, L/kg 90
160

Common Calculations

PREN (Pitting Resistance) 15
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
190
Resilience: Unit (Modulus of Resilience), kJ/m3 650
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
20
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 6.9
4.1
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.00030 to 0.0060
0
Carbon (C), % 0.090 to 0.13
0 to 0.030
Chromium (Cr), % 8.5 to 9.5
17 to 22
Iron (Fe), % 86.2 to 88.9
58.7 to 71.9
Manganese (Mn), % 0.3 to 0.6
0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
2.0 to 3.0
Nickel (Ni), % 0 to 0.4
9.0 to 13
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.040 to 0.090
0.1 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0.1 to 0.5
0 to 1.5
Sulfur (S), % 0 to 0.010
0 to 0.040
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 0.9 to 1.1
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0