MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F911 vs. AWS ER80S-Ni2

Both ASTM A182 grade F911 and AWS ER80S-Ni2 are iron alloys. They have 89% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F911 and the bottom bar is AWS ER80S-Ni2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
27
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
72
Tensile Strength: Ultimate (UTS), MPa 690
620
Tensile Strength: Yield (Proof), MPa 500
540

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Melting Completion (Liquidus), °C 1480
1450
Melting Onset (Solidus), °C 1440
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
52
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.4
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.6
Embodied Energy, MJ/kg 40
22
Embodied Water, L/kg 90
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
160
Resilience: Unit (Modulus of Resilience), kJ/m3 650
770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
22
Strength to Weight: Bending, points 22
21
Thermal Diffusivity, mm2/s 6.9
14
Thermal Shock Resistance, points 19
18

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.00030 to 0.0060
0
Carbon (C), % 0.090 to 0.13
0 to 0.12
Chromium (Cr), % 8.5 to 9.5
0
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 86.2 to 88.9
94.2 to 97.6
Manganese (Mn), % 0.3 to 0.6
0 to 1.3
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.4
2.0 to 2.8
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.040 to 0.090
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0.1 to 0.5
0.4 to 0.8
Sulfur (S), % 0 to 0.010
0 to 0.025
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 0.9 to 1.1
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.5